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Abstract

We give a knot theoretical motivation for the Drinfeld double construction of quasi-triangular Hopf
algebras.

1 Introduction

In the theory of Hopf algebras Drinfeld’s double construction is of fundamental importance. It allows one to
produce a solution to the Yang-Baxter equation starting from only a single Hopf algebra. Solutions to the
Yang-Baxter equation allow one to find representations of the braid group and therefore Drinfeld’s double
construction is highly relevant for knot theory. In fact all of the standard quantum groups that are at the
basis of the quantum knot invariants arise this way.

In this note we rephrase the double construction in purely knot theoretical terms. This is done by
interpreting all Hopf algebra operations in terms of operations on tangles. The key idea is to start with a
special class of tangle diagrams is called over-then-under (OU) tangles. These are tangles that have a diagram
that does not include the configuration shown in Figure 1. In words this means that, all the overpasses come
first as one walks along a strand of the tangle. In some sense OU the opposite of an alternating tangle.

Figure 1: The three forbidden tangles. A tangle diagram is OU if it does not contain any of these three.

Some elementary (non)-examples of OU -diagrams are shown in Figure 2.

Figure 2: Left: A single (negative) crossing seen as a 2-strand OU tangle diagram. Middle: A tangle diagram
that is not OU . Right: An isotopic tangle that is OU .

OU tangles are remarkably rigid in the sense that any Reidemeister III move destroys the property and
if it exists, a minimal crossing number OU diagram is unique. An idea for bringing any tangle diagram into
OU -form by isotopies is as follows. The Reidemeister 1 kinks can be closed in the other direction and more
interestingly the first forbidden tangles can be removed using the glide move, which is the isotopy shown in
Figure 3. Unfortunately such an algorithm may not terminate. Nevertheless the glide move will be the key
to our knot theoretical approach to the Drinfeld double. For more on OU tangles see Cite OU paper.

In this paper we start by constructing an invariant of OU tangles from a Hopf algebra. The algebraic
equivalent of the glide move will then allow us to extend our invariant to all tangles. The result is the
universal invariant of the Drinfeld double of the Hopf algebra we started with. Moreover the Hopf operations
take on a natural meaning in terms of tangle operations. Applying coproduct, counit and antipode to our
invariant gives the invariant of the tangle after doubling, deleting and reversing a strand respectively.

We first carry out the above program in a special case in which one of the algebras involved is involutory
S2 = id. To extend our ideas to all Drinfeld doubles we make use of rotational diagrams where we keep
track of the (planar) rotation of the arcs in our diagram. This seems important to reflect the algebra of the
antipode which is generally not an involution so can not correspond precisely to reversal of a strand. More
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Figure 3: The glide move

concretely it is the non-braid-like Reidemeister II move that fails under the naive set up and forces us to
pass to a more subtle framework.

Ordinary tangles will be shown to inject into equivalence classes of rotational diagrams. Therefore the
resulting invariant of rotational diagrams is the desired invariant of tangles that we sought for. It has all the
desired properties that we met in the special case and is a knot theoretical incarnation of the Hopf algebra
of the Drinfeld double. As a bonus the notion of ribbon element and Drinfeld element is also clarified.

2 The involutory case

Throughout this section we consider oriented, framed tangles without closed components. This includes
(long)knots as one-strand tangles. We will order the strands and consider our tangles up to isotopy and
reordering of the strands.

We start with a finite dimensional Hopf algebra1 U over a field κ and consider its dual O = U∗. The dual
pairing is denoted 〈., .〉 : U × O → κ and we will often work with a basis u1, . . . un of U together with the
dual basis o1 . . . , on of O. Throughout this section U will be assumed involutory S2 = id, later we will drop
this assumption.

As a simple running example we choose O = κ(G) to be the κ valued functions on some finite group G
and U = κ[G] is the group algebra. The dual pairing in this case is given by evaluation of the functions on the
elements of the group. Denoting by δg the function that takes 1 on g and is 0 we may write the coproduct as
∆U(g) = g⊗g and ∆O(δg) =

∑
ab=g δaδb. The antipode is just inversion and hence an involution SU(g) = g−1

and SO(δg) = δg
−1

and finally εU(g) = 1 and εO(δg) = δg(e).
Consider the elements X, X̄ ∈ U ⊗ O defined by X =

∑
i o
i ⊗ ui and X̄ =

∑
i o
i ⊗ SU(ui). Notice X is

just the canonical ’identity’ element dual to the pairing and X̄ is its multiplicative inverse. This is because∑
i,j o

ioj ⊗ ui ⊗ oj =
∑
k o

k ⊗∆U(uk) and applying (id⊗m) ◦ (id⊗ id⊗ S) to the left hand side gives XX̄
while the antipode axiom implies the right right hand side becomes 1⊗ 1. In our running example we have
X =

∑
g∈G δg ⊗ g and X̄ =

∑
g∈G δg ⊗ g

−1.
At first we will define the double of U as a vector space D spanned by finite formal sums of products

ou with o ∈ O and u ∈ U. Both O and U are included in D, making D both a left O module and a right U
module.

With the above algebraic data we can assign a value ZD to each OU -tangle diagram as follows.

Definition 1. For an OU-tangle diagram T with n strands define ZD ∈ D⊗n where n is the number of
strands of T . ZD computed in three steps:

1. Place a pair (oi, ui) on every positive crossing of T and a pair (oi, S(ui)) on every negative crossing,
associating for each pair the element in O with the overpassing strand near the crossing and the element
in U with the under-pass.

2. For each strand multiply the elements associated to it in order of appearance to obtain an element in
D. Now take the tensor product of these elements of D in the order of the strands.

3. ZD is the sum of the contributions in part 2) where we sum over all ways of placing pairs according to
the rules in part 1).

Perhaps the simplest example of this construction is ZD(T ) = X when T is a single positive crossing. A
more interesting example is provided by the rightmost tangle T in Figure 2. In Figure 4 we have redrawn
it in a more convenient form indicating the elements used in computing ZD. There are four crossings in the
tangle T , three positive and one negative so we place pairs (oi, ui) on the positive crossings shown in red
blue and green. On the negative crossing we place a pair (od, S(ud)) as shown in brown. Next we multiply
the elements found on the first strand and get ocobodS(ud)uauc ∈ D. Doing the same on the second strand
gives oauc ∈ D. Finally we take the tensor product of these and sum over the indices of the four pairs a, b, c, d
to find

ZD(T ′) =
∑
a,b,c,d

ocobodS(ud)uauc ⊗ oauc ∈ D⊗2

1Recall this means both U and its dual are associative algebras with unit. The duals of the product and the unit are called
coproduct ∆ and counit ε, they are assumed algebra morphisms. Finally there exists a map called antipode S : U → U satisfying
m(S ⊗ id)∆ = 1ε = m(id⊗ S)∆.
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Figure 4: Computing the invariant ZD by placing copies of X, X̄ on the crossings and multiplying along
the strands.

The expressions for ZD look like state sums but another way to think of them is that ZD of a diagram
is assembled from the crossings by multiplying copies of the elements X and X̄. It is understood that the
empty product corresponds to the unit element so that is the value ZD assigns to a single crossingless strand.
Our definition is merely a version of the universal invariant corresponding to the algebra D with universal
R-matrix X [3].

ZD is invariant under both oriented Reidemeister moves, IIb and IIc shown in Figure 5. This notation is
taken from [4] where these moves are shown to be sufficient. For IIb this is just X̄X = 1⊗ 1 as was already
asserted above. Applying id ⊗ SU to both sides of this equation and making use of the fact that SU is an
involution and S(ab) = S(b)S(a) also proves IIc. In the general case where SU is not an involution IIc is not
satisfied and this forces us to consider more subtle types of tangle diagrams, see section 3.

Figure 5: The oriented Reidemeister moves IIb and IIc and III.

So far we know that ZD is an invariant of (framed) OU -tangles. Recall that the glide move shown in
Figure 3 can be used to (almost) turn general diagrams into OU diagrams. The algebraic counterpart of the
glide move will upgrade ZD to an invariant of all tangles in the sense that it will be well-defined and under
all oriented Reidemeister moves (ignoring Reidemeister I of course).

The glide move is an isotopy between a non-OU tangle and an OU tangle so if we are to extend ZD to all
tangles it should take the same value on both sides of the glide move. In Figure 6 we placed pairs of algebra
elements on the crossings to easily compute ZD of both sides.

Figure 6: Representing the glide move in algebra.

Of course the left hand side is not an OU -tangle so ZD is not yet defined but we ignore this for a moment
and simply place the pairs on the crossings as we would normally do it. Multiplying as usual the left hand
side gives ∑

a,b

uaob ⊗ oa ⊗ ub

The final two factors are in D and the first tensor factor contains precisely what we do not know yet: the
product uaob. The right hand side is OU and gives:∑

a,b,c,d

oaub ⊗ ocobod ⊗ S(ud)uauc ∈ D⊗3

Pairing with u ∈ U on the second tensor factor and with o ∈ O on the third to turn the left hand side into
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ou (using o =
∑
i〈o, u

i〉ui). The right hand side turns into∑
a,b,c,d

oaub〈ocobod, u〉〈o, ūduauc〉

Comparing both sides leads us to the following:

Definition 2. Define an algebra structure on D by requiring O,U are subalgebras by the inclusions o 7→ o1
and u 7→ 1u and

uo =
∑
a,b,c,d

oaub〈ocobod, u〉〈o, S(ud)uauc〉 (1)

Notice ZD now extends to an invariant of framed tangles once we prove that the product in the algebra
is associative because both sides of Reidemeister III are related by a single glide move and a IIc move, see
Figure 7. In that case ZD coincides with what is known as the universal knot invariant corresponding to the
algebra D with R-matrix X2.

Figure 7: Reidemeister III is implied by a glide and a IIc move.

In our running example this defines the multiplication on D on the basis to be determined by

hδg =
∑

a,b,c,d∈G

δab(δcδbδd)(h)δg(d
−1ac) = δhgh−1h

using c = b = d = h and d−1ac = g. We invite the reader to use the Wirtinger presentation of the knot
group to check that ZD(K) =

∑
φ:π1(K)→G δρ(m)ρ(`), where the sum is over all group homomorphisms ρ.

2.1 Topological interpretation of the Hopf algebra structure

Before going deeper into the algebra let us clarify the nature of the Hopf algebra operations on a class of
tangles that is even simpler than OU -tangles. This allows us to use ZD as an elegant graphical calculus for
doing manipulations with Hopf algebra expressions. Not the usual graphical calculus where the coproduct is
a Y -shape and the multiplication is an upside down Y -shape but rather the O/U -tangles themselves. Using
ZD we will find a simple topological interpretation for all the fundamental Hopf algebra maps: multiplication
is merging of strands, coproduct doubles a strand, counit deletes a strand and antipode reverses it.

Definition 3. Define an O/U-tangle to a tangle in which every strand consists of either only over-passes
or only under-passes or no crossings at all.

This notion is more restrictive than OU -tangles. A single crossing is a simple example of an O/U tangle.
Other examples are obtained by merging two crossings at the over-strands.

Figure 8: Graphical interpretations for the operations in the tensor algebra of our Hopf algebra.

The graphical calculus of ZD on O/U -tangles is laid out in the following Lemma, and Figure 8:

Lemma 1. In what follows T, T ′ refer to O/U diagrams. Also a Hopf algebra operation applied to a tensor
factor corresponding to an under-strand will be assumed to be that of U and in case of an overstrand it will
be that of O.

1. ZD of a crossing is X if the crossing is positive and X̄ otherwise.

2. ZD of a crossingless strand is 1O1U ∈ D.

2We prefer the letter X instead of the traditional R for the universal R-matrix.
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3. ZD(T t T ′) = ZD(T )⊗ ZD(T ′)

4. If T ′ is obtained from T by...

(a) connecting3 the end of strand i with the start of j calling the resulting strand k. Then ZD(T ′) =
mij
k (ZD(T )) where mij

k means we should multiply the elements in tensor factor i with those in
tensor factor j and place the result in tensor factor k.

(b) deleting strand i. Then ZD(T ′) = εi(ZD(T )), where εi means applying the co-unit to the tensor
factor corresponding to strand i.

(c) reversing strand i. Then ZD(T ′) = Si(ZD(T )), where Si means applying the S to the tensor factor
corresponding to strand i.

(d) doubling strand i, calling the resulting strands ` and r where ` is to the left of r as seen from
the point of view of the framed strand i. Then ZD(T ′) = (∆U)i`rZD(T ) if i was an under-strand
and ZD(T ′) = (∆op

O )i`r(ZD(T )) if i was an over-strand. Here ∆i
`r means applying ∆ to the tensor

factor corresponding to strand i and placing the first factor of the result in tensor factor ` and the
second factor of the result in place r. Also ∆op

O is defined by 〈∆op
O (o), u⊗ v〉 = 〈o, vu〉.

Proof. Items 1,2,3,4a follow directly from the definition of ZD on O/U -tangle diagrams given in Definition 1.
The remaining items 4b,c,d follow from the fact that ε, S,∆ are algebra (anti)-morphisms once we checked
the statement is true for the case where T is a single crossing or a crossingless strand. Starting with the
co-unit, for T the positive crossing the statement follows from

∑
i o
i ⊗ ε(ui) =

∑
i o
i〈1O, u

i〉 = 1O. Since
ε(S(u)) = u the same goes for the negative crossing and the same also holds for applying εO to overstrands.
For crossingless strands we just need ε(1) = 1 ∈ κ. Next 4c: The definition of X̄ and S2 = id and S(1) = 1
prove the statement for crossings and crossingless strands. Finally 4d follows from ∆(1) = 1 ⊗ 1 and for
T = X and the under-strand

(id⊗∆U)ZD(T ) =
∑
a

oa ⊗∆U(ua) =
∑
a,b,c

oa ⊗ 〈oboc, ua〉ub ⊗ uc =
∑
b,c

oboc ⊗ ub ⊗ uc = ZD(T ′)

Applying ∆O to the over-strand we notice the tensor factors need to be swapped to actually coincide with
ZD(T ′) so we apply the opposite coproduct instead:

(∆op
O ⊗ id)ZD(T ) =

∑
a

∆op
O (oa)⊗ ua =

∑
a,b,c

〈oa, ucub〉ob ⊗ oc ⊗ ua =
∑
b,c

ob ⊗ oc ⊗ ucub = ZD(T ′)

The case of the negative crossing is similar since for any Hopf algebra ∆(S) = (S ⊗ S)∆op. The opposite
order in the output of ∆O appears in the interpretation because there is an asymmetry in the crossing itself,
see Figure 9. Walking along the over-strand after doubling the under-strand one first meets the left-most
of the two parallel strands. Conversely, when walking along the under-strand after doubling the over-strand
one first meets the right-most of the two parallel strands.

Figure 9: Graphical interpretations for the operations in the tensor algebra of our Hopf algebra.

The above lemma extends to OU -tangle diagrams almost immediately once we define appropriate notions
of ∆, ε, S on D. The proof relied on checking the statements locally for the crossings and crossingless strands
and then extending by algebra (anti)-morphism properties. Diagrammatically this is natural in the sense
that multiplication is concatenation of the diagrams. This motivates the following definitions of maps on D.

Definition 4. Define 1D = 1O1U ∈ D, the map εD : D → κ by εD(ou) = εO(o)εU(u) and SD : D → D by
co-product SD(ou) = SO(o)SU(u) and ∆D : D→ D⊗ D by ∆D(ou) = ∆op

O (o)∆U(u).

As a corollary we thus extend the Hopf operations to all OU -tangles:

Lemma 2. In what follows T, T ′ refer to OU diagrams.

1. ZD of a crossing is X if the crossing is positive and X̄ otherwise.

2. ZD of a crossingless strand is 1D ∈ D.

3. ZD(T t T ′) = ZD(T )⊗ ZD(T ′)

4. If T ′ is obtained from T by...

(a) connecting the end of strand i with the start of j calling the resulting strand k. Then ZD(T ′) =
(mD)ijk (ZD(T )).

3without introducing new crossings of course
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(b) deleting strand i. Then ZD(T ′) = εiD(ZD(T )).

(c) reversing strand i. Then ZD(T ′) = (SD)i(ZD(T )).

(d) doubling strand i, calling the resulting strands ` and r where ` is to the left of r as seen from the
point of view of the framed strand i. Then ZD(T ′) = (∆D)i`rZD(T ).

As a word of caution, reversing a strand may turn an OU -tangle diagram T into a non-OU -tangle diagram
T ′ and the above corollary does not apply to such cases as both diagrams are assumed to be OU .

2.2 Drinfeld double construction

Theorem 1. (Drinfeld double construction, involutory case).

1. D is a Hopf algebra with respect to the multiplication in (1) and the maps from Definition 4.

2. Moreover dropping the requirment that the tangles are OU Definition 1 extends ZD to all tangle diagrams
and is invariant under Reidemeister IIb,c and Reidemeister III making it an invariant of tangles.

3. Finally all the properties of ZD from Lemma 2 extend to all tangle diagrams.

Proof. We extend the definition of ZD to all tangle diagrams as in Definition 1, dropping the OU -requirement.
However since we do not yet know whether the multiplication (1) is associative we need to place brackets
on the strands to indicate the intended order of multiplication.

To establish associativity it suffices to show that

∀a, b, c : (uaob)oc = ua(oboc) (uaub)oc = ua(uboc)

because O and U are associative subalgebras. In the proof we will use the interpretation of the multi-
plication in terms of the glide move explained in the discussion preceding Equation (1). We start with
by proving equality ZD(T ) = ZD(T ′) where T and T ′ are as shown in Figure 10. Indeed by definition
ZD(T ) =

∑
i,j,k(uioj)ok ⊗ oi ⊗ uj ⊗ ok and ZD(T ′) =

∑
i,j,k u

i(ojok)⊗ uj ⊗ ok so pairing with ua ⊗ ob ⊗ oc

on the final three tensor factors yields (uaob)oc = ua(oboc) as desired.

Figure 10: A diagrammatic proof that Z(T ) = Z(T ′). The brackets in grey indicate the order of multipli-
cation/merging of the strands.

Figure 10 does indeed prove that ZD(T ) = ZD(T ′) because the value of ZD on each of the six diagrams is
the same. The first equality is by definition of the product: it takes the same value on two diagrams related
by a glide move. Going from the second to the third picture we use this property again to perform another
glide from o(uo) to (oo)u. The fourth diagram should be read as taking ZD of the diagram shown and then
applying ∆D to the third tensor factor (corresponding to strand 3). From Lemma 1 we know that ZD of this
coproduct is the same to ZD of the third diagram because strands 3, 4 are parallel. The fifth diagram once
again applies the glide-definition of the product and going to the sixth picture we undo the ∆D. The proof
of (uaub)oc = ua(uboc) is analogous and is left to the reader.

We already observed that invariance of ZD under Reidemeister III is now immediate because both tangles
in Reidemeister III are related by a single glide move. Indeed, Reidemeister III is true by definition of the
multiplication in D.

Now that D is shown to be associative we can drop the brackets on our tangle diagrams and see that ZD
is well defined on all tangle diagrams.

Figure 11: Proofs of the coassociativity and antipode axioms.

Next we check that D is indeed a Hopf algebra. For this it remains to check coassociativity of ∆D, the
fact that both εD and ∆D are algebra morphisms and m(SD ⊗ id) ◦ ∆D = 1DεD and a the same with S on
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the other side. Coassociativity and the antipode axiom are checked using the OU tangle G shown in Figure
11. In the first diagram we show G itself and using Lemma 2 twice we obtain the second picture regardless
of how we apply the two ∆D operations to strand 3 as indicated. Pairing on the strands 1 and 2 yields
the desired (∆D ⊗ id)∆D(oaub) = (id⊗∆D)∆D(oaub) for all a, b. For the antipode axiom we proceed in the
same way using Lemma 2 to get from the third to the fourth picture. Note that the antipode can actually
be interpreted as reversal of the strands at the two participating crossings, is we combine Lemma 2 with
the definition SD(ou) = SD(u)SD(o). Two applications of Reidemeister II bring us to a diagram that can be
interpreted by Lemma 2 as applying ε to strand 3 of G and then tensoring with a unit 1D. As before pairing
on tensor factors 1 and 2 yields the desired equality.

Figure 12: Proving εD and ∆D are algebra morphisms.

The proofs of the final two Hopf axioms are contained in Figure 12. This time it suffices to prove
εD(uaob) = εD(ub)εD(oa) and ∆D(uaob) = ∆D(ua)∆D(ob) for all a, b so to achieve this we work with the
tangle H shown in the first column of Figure 12. On the one hand ZD(H) =

∑
ij o

i ⊗ uj ⊗ uioj so that

applying our morphism f = ε or ∆ will yield f(uaob) after pairing with ua ⊗ ob on the first two tensor
factors. On the other hand H is the left hand side of the glide move so we may turn it into an OU -tangle
and then apply Lemma 2 to interpret the morphism f graphically as shown in the third column. The fourth
column is obtained by isotopy invariance of ZD and the fifth column matches this with the desired product
f(ua)f(ob) after pairing. The dotted line in the bottom right picture is supposed to indicate that we multiply
on both factors after applying ∆D to the crossings.

Next, points 1,2,3,4a of Lemma 2 (with the OU requirement dropped) follow directly from the definition
of the extended ZD. Since D is a Hopf algebra it follows that SD is anti-multiplicative and ∆D and εD are
multiplicative. Therefore the statement of the Lemma extends without any changes.

Note that D does indeed conincide with the Drinfeld double found in the literature [1, 2] although there
one usually writes the multiplication more explicitly in terms of the coproduct and Sweedler’s notation
(∆O ⊗ id)∆O(o) =

∑
o(1) ⊗ o(2) ⊗ o(3) and (∆U ⊗ id)∆U(u) =

∑
u(1) ⊗ u(2) ⊗ u(3). Then we find

uo =
∑
a,b,c,d

oaub〈oc ⊗ ob ⊗ od, (∆U ⊗ id)∆U(u)〉〈(SO ⊗ id⊗ id)(∆O ⊗ id)∆O(o), ud ⊗ ua ⊗ uc〉 =

∑
a,b,c,d

oaub〈oc, u(1)〉〈ob, u(2)〉〈od, u(3)〉〈SO(o(1)), ud〉〈o(2), ua〉〈o(3), uc〉 =

∑
o(2)u(2)〈o(3), u(1)〉〈SO(o(1)), u(3)〉

Also note that our double D is a quasi-triangular Hopf algebra with respect to the universal R-matrix X
in the sense that

(∆⊗ id)(X) = X23X13 (∆⊗ id)(X) = X12X13 ∆op(x) = X̄∆(x)X

Here we used the traditional notation where X13 =
∑
i o
i ⊗ 1⊗ ui so the subscripts mean the first factor of

X sits in place 1 and the second factor sits in place 3. These equations follow directly from the graphical
interpretation of the coproduct given in the theorem above. Comparing to the literature this notion of
quasi-triangularity is with respect to the opposite multiplication.
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3 The Sweedler algebra and the failure of Reidemeister IIc

In this section we introduce Sweedler example and show that in this case we do not even get an invariant
of OU tangles. The problem is that it fails Reidemeister IIc. As the Sweedler algebra is the simplest of its
kind we will also use it as a new running example to illustrate our constructions.

The 4-dimensional Sweedler algebra SW generated by s, w with relations

s2 = 1 w2 = 0 ws = −sw

it has basis 1, s, w, sw. The algebra SW is self dual with respect to the following pairing. Consider a second
copy of the Sweedler algebra generated by σ, ω with the same relations. Then the pairing is 〈, 〉 : SW⊗SW→ Q
is summarized by the following matrix

〈., .〉 1 s w sw

1 1 1 0 0
σ 1 −1 0 0
ω 0 0 1 1
σω 0 0 1 −1

Consequently the elements X, X̄ are:

Xij = (1 + σi + sj − σisj)
1 + ωiwj

2
X̄ij =

1− ωiwj
2

(1 + σi + sj − σisj)

This is clear once we expand the brackets and write Xab =
∑
i o
i
au

i
b where we may take u1 = 1, u2 =

s, u3 = w, u4 = sw and o1 = σ+1
2
, o2 = σ−1

2
, o3 = σ+1

2
ω, o4 = σ−1

2
ω. The failure of Reidemeister IIc is now

readily confirmed. One finds X12X̄34//m
13
1 m

24
2 = 1− (1− σ1)s2ω1w2 6= 1.

4 Virtual Rotational tangles

5 The general case

First work with rotation number 0 on every strand so everything is generated by X and S2? Introduction of
C as square root of double kink with rot 2 and writhe 0.

6 Recycling: older material below here
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